Control variates for stochastic gradient MCMC

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control Variates for Stochastic Gradient MCMC

It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly with dataset size. We compare the performance of two classes of methods which aim to solve this issue: stochastic gradient MCMC (SGMCMC), and divide and conquer methods. We find an SGMCMC method, stochastic gradient Langevin dynamics (SGLD) to be the most robust in these comparisons. This method makes use of a noisy esti...

متن کامل

Distributed Stochastic Gradient MCMC

Probabilistic inference on a big data scale is becoming increasingly relevant to both the machine learning and statistics communities. Here we introduce the first fully distributed MCMC algorithm based on stochastic gradients. We argue that stochastic gradient MCMC algorithms are particularly suited for distributed inference because individual chains can draw mini-batches from their local pool ...

متن کامل

CPSG-MCMC: Clustering-Based Preprocessing method for Stochastic Gradient MCMC

In recent years, stochastic gradient Markov Chain Monte Carlo (SG-MCMC) methods have been raised to process large-scale dataset by iterative learning from small minibatches. However, the high variance caused by naive subsampling usually slows down the convergence to the desired posterior distribution. In this paper, we propose an effective subsampling strategy to reduce the variance based on a ...

متن کامل

A Complete Recipe for Stochastic Gradient MCMC

Many recent Markov chain Monte Carlo (MCMC) samplers leverage continuous dynamics to define a transition kernel that efficiently explores a target distribution. In tandem, a focus has been on devising scalable variants that subsample the data and use stochastic gradients in place of full-data gradients in the dynamic simulations. However, such stochastic gradient MCMC samplers have lagged behin...

متن کامل

Stochastic Gradient Geodesic MCMC Methods

We propose two stochastic gradient MCMC methods for sampling from Bayesian posterior distributions defined on Riemann manifolds with a known geodesic flow, e.g. hyperspheres. Our methods are the first scalable sampling methods on these manifolds, with the aid of stochastic gradients. Novel dynamics are conceived and 2nd-order integrators are developed. By adopting embedding techniques and the g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics and Computing

سال: 2018

ISSN: 0960-3174,1573-1375

DOI: 10.1007/s11222-018-9826-2